Applied Learning Experiences in the (Semi?) Remote Environment: Continuing the Conversation

JESSICA HEALY
7/23/20
Which fall courses/programs have an applied component?

- Art
- Non-majors science courses
- Biology
- Chemistry
- Computer science
- Education
- ENVS
- Leadership
- Music
- Physics

- Psychology
- Public Health
- Theater
- Non course-centered experiences:
 - Honors Program
 - Scarbrough
 - Directed/independent study research students
 - Language house
Reports from the field

- Sciences summer research program – all remote
 - Faculty collected data in lab or field & students analyzed (me, Dave Baker)
 - Faculty led students in analyzing data from previous projects/available data and/or writing a paper for submission for publication (Jim, me, Huy, Lance, John)
 - Faculty led students in literature review/planning for future experiments (David A, Kelli)
- Scarbrough – all remote
 - Faculty mentor students in conducting independent summer research in humanities & social sciences
- Social Entrepreneurship for Poverty Alleviation (SEPA) Nonprofit Organization
 - Invited back previous summer interns to write grants
Potential problems & proposed solutions

1) Insufficient space in assigned rooms for all students to carry out activities concurrently
2) Certain activities require close work between students or between students/faculty
3) Starting in person then moving remote
4) Some group members may need to quarantine/not come to campus
5) Limited availability of off-campus community involvement
1) Insufficient space in assigned rooms for all students to carry out activities concurrently

- Conduct activities outside/with distancing
- Expand labs into 2 rooms where available to run concurrently (Genetics)
- In 3-hour lab sessions, have ½ class in person for 90 minutes, then other half
- Have students take turns conducting experiments in person vs. concurrent ‘dry lab’ activities (Chemistry, workshop physics)
- Reduce student number in research labs (Google sheets document for signing up for spots in shared spaces)
- Reduce total number of labs/experiences/scope of project/reertoire
- Shift focus from experimentation to skill-building/information literacy
2) Certain activities require close work between students or between students/faculty

- Face shields + face masks for short-term close interactions (biology field labs)
- Build physical Plexiglas barriers to separate work stations (Biology, Chemistry, Art)
- Language house
 - Make outdoor spaces accessible for meetings (outdoor projector, improved internet in courtyard)
- Music ensembles
 - Break into smaller ensembles
 - Work on chamber repertoire
 - Record & broadcast concerts
3) Starting in person then moving remote

- Faculty conduct experiments & share data for analysis (Physics research, Biology)
- Plan citizen science/data analytic project that can be conducted either in person or remote
- Fully flip courses with all lectures pre-recorded & activities that can be conducted either in-person or remote
- Give students mobile art kit/lab/field materials to take home (Art, Biology)
- Use free versions of software (Computer Science)
- Use remote log-ins for software with on-campus license (Physics, Psych, ENVS)
4) Some students may need to quarantine/not come to campus

- Have video labs/prelabs/materials demos pre-recorded and available online (Chemistry, Art)
- Design groups with mix of remote & in-person participants (workshop physics)
 - Use Google docs/cell phones/organization apps to manage
5) Limited availability of off-campus community involvement

- Leadership capstone
 - Solve community problems through effective use of technology
 - Conduct remote research & interviews
- Teacher program
 - Video observation tasks
 - Remote observation of online K-12 classes
Questions for discussion:

- What applied experiences am I administering in the fall?
- What challenges posed by that experience haven’t been addressed yet?
- What are some potential solutions to those challenges?
 - What are the learning objectives for this applied experience?
 - What do I most want students to get out of it?
 - What are the safety concerns surrounding this applied experience?
 - What software do I need students to have access to?
 - What are the student’s career goals?
 - What sort of experiences do students absolutely need to have before progressing to their career/grad school/professional school?
Lab options for online courses:

Conducting remote interviews for oral histories:
https://www.oralhistory.org/2020/03/26/webinar-oral-history-at-a-distance-conducting-remote-interviews/

Doing (social science) field work in a pandemic:
https://docs.google.com/document/d/1clGjGABB2h2qbdUTgfqribHmog9B6P0NvMgVuiHZCI8/edit

Citizen science projects: https://www.citizenscience.gov/#

Mentoring Remote Undergraduate Research in Mathematics (but also good general advice for remote research mentoring):
https://drive.google.com/file/d/1YTz7ul6S8Ly0AUhvWHNRDnZcHf6lcvFS/view

Council on Undergraduate Research:
- Resource library: https://community.cur.org/resources/communitylibraries#GoOnline